2006/09/06(水)電流駆動アンプの解析

俗に言う山本式電流帰還アンプの作成記事および解析記事です。

※注意。少なくとも電圧駆動の伝達関数が間違っています。よってこの記事の電圧駆動に関する言及は正しくありません。

過渡応答特性

電圧駆動アンプ、電流駆動アンプの回路図をそれぞれ次のようにして解析を行いました。

voltage_amp.gif

電圧駆動(電圧出力)アンプ

G(s)=\frac{V_o(s)}{V_i(s)}=\frac{A}{R_o}\cdot\frac{1}{Ts+1}

T=\frac{L}{R_o}\cdot\frac{R_s(A+1)+R_o+R_f}{Rf+R_s}

current_amp.gif

電流駆動(電流出力)アンプ

G(s)=\frac{I(s)}{V_i(s)}=\frac{AT}{L}\cdot\frac{1}{Ts+1}

T=\frac{L}{R_s(A+1)+R_L+R_o}

ステップ応答

1 - \exp(-\frac{1}{T}t)

電流駆動の場合、スピーカー両端電圧を最終出力としてみれば

R_L(1 - \exp(-\frac{1}{T}t)) + \frac{L}{T} \exp(-\frac{1}{T}t)

となります。

シミュレーション

周波数特性も含め、OpenOffice or Excelでシミュレーションしたものがこのファイルです。ラジカセ用(PCスピーカー用)パワーICなどでありそうな値をパラメーターとして設定したときの周波数特性を見てみると

ftoku.gif

のような感じです。色々パラメーターを設定して確認してみれば分かりますが、だいたい次のような特徴が挙げられます。

  • 電流駆動は立ち上がり特性が大変よい。場合によっては時定数Tが2桁ぐらい違います。*1
  • 電流駆動の方が位相特性が良くなる傾向にある

本家のサイトの記事にもありますが、過渡応答特性=入力波形に対する出力の追従性は電流駆動の方が比較にならないほど優秀です。逆に言えば、電圧出力ではどうしても再生波形が歪んでしまいます。

*1 : 電源電圧を考慮していないシミュレーションなので、実際には特性は多少悪化しますが、電圧駆動よりは断然良いことに間違えありません。